Trigonométrie, logarithme et intégrales

Ayoub Hajlaoui

Cos, ln, et sinus dans ce train de l'horreur! C'est pour qu'au terminus, ils vous fassent moins peur.

Énoncé : (temps conseillé : 45 min)

Soient f_1 et g_1 les fonctions définies sur]0; $+\infty[$ par

- $g_1(t) = t \cos(\ln(t))$ et $f_1(t) = \cos(\ln(t)) \sin(\ln(t))$
- 1) Montrer que g₁ est une primitive de f₁.
 2) De même, trouver une primitive g₂ de la fonction f₂ définie sur]0; +∞[par f₂(t) = cos(ln(t)) + sin(ln(t))
 - 3) En déduire les valeurs de $\int_{1}^{2} \cos(\ln(t)) dt$ et $\int_{1}^{2} \sin(\ln(t)) dt$
 - 4)a) Justifier que pour tout réel t de l'intervalle [1, 2], $\cos(\ln(t)) \ge 0$ et $\sin(\ln(t)) \ge 0$.
- b) En déduire une interprétation graphique du résultat de la 3).

Correction:

1) Il suffit tout simplement de dériver g_1 et de retrouver f_1 ...

 g_1 est dérivable sur]0; $+\infty[$ par composition et produit de fonctions dérivables.

On dérive g_1 comme un produit. L'une des fonctions de ce produit est un chouia plus compliquée à dériver...

$$\forall t \in]0 ; +\infty[, g_1'(t) = 1 \times \cos(\ln(t)) + t \times \frac{1}{t} \times [-\sin(\ln(t))] = \cos(\ln(t)) - \sin(\ln(t)) = f_1(t)$$
Donc g_1 est une primitive de f_1 .

2) Quelle idée pour une primitive de f_2 ? Sachant que la seule différence avec f_1 , c'est le signe – qui devient +... Mais c'est la dérivation du cosinus qui donnait ce signe –... Et si maintenant, on dérivait du sinus?

Soit g_2 la fonction définie sur]0; $+\infty[$ par $g_2(x) = t\sin(\ln(t))$.

 g_2 est dérivable pour les mêmes raisons que g_1 .

$$\forall t \in]0\;;\; +\infty[\;,\; g_2'(t)=1\times\sin(\ln(t))+t\times\frac{1}{t}\times\cos(\ln(t))=\sin(\ln(t))+\cos(\ln(t))=f_2(t)$$

Donc g_2 est une primitive de f_2 .

3) En déduire... En déduire... A priori, si on nous dit ça, c'est qu'on ne peut pas calculer directement les valeurs de ces intégrales. Avons-nous des primitives de $t \to \cos(\ln(t))$ et $t \to \sin(\ln(t))$ Non, mais nous avons des primitives de f_1 et f_2 . Et si nous arrivions à exprimer $\cos(\ln(t))$ et $\sin(\ln(t))$ en fonction de $f_1(t)$ et $f_2(t)$?

$$\forall t \in \left]0\;;\; +\infty\right[\;, f_1(t) + f_2(t) = \cos(\ln(t)) - \sin(\ln(t)) + \cos(\ln(t)) + \sin(\ln(t))$$

Donc $f_1(t) + f_2(t) = 2\cos(\ln(t))$

Donc
$$cos(ln(t)) = \frac{f_1(t) + f_2(t)}{2}$$
. Donc $\int_1^2 cos(ln(t)) dt = \int_1^2 \frac{f_1(t) + f_2(t)}{2} dt = \left[\frac{g_1(t) + g_2(t)}{2}\right]_1^2$

$$= \frac{1}{2} \left[t \cos(\ln(t)) + t \sin(\ln(t)) \right]_{1}^{2} = \frac{1}{2} \left(2 \cos(\ln(2)) + 2 \sin(\ln(2)) - \cos(\ln(1)) - \sin(\ln(1)) \right)$$

$$= \frac{1}{2} \left(2\cos(\ln(2)) + 2\sin(\ln(2)) - \cos(0) - \sin(0) \right) = \cos(\ln(2)) + \sin(\ln(2)) - \frac{1}{2}$$

Donc
$$\int_{1}^{2} \cos(\ln(t)) dt = \cos(\ln(2)) + \sin(\ln(2)) - \frac{1}{2}$$
De même, $\forall t \in]0 ; +\infty[, f_{2}(t) - f_{1}(t) = \cos(\ln(t)) + \sin(\ln(t)) - \cos(\ln(t)) - \sin(\ln(t))$
Donc $f_{2}(t) - f_{1}(t) = 2\sin(\ln(t))$
Donc $\sin(\ln(t)) = \frac{f_{2}(t) - f_{1}(t)}{2}$. Donc $\int_{1}^{2} \sin(\ln(t)) dt = \int_{1}^{2} \frac{f_{2}(t) - f_{1}(t)}{2} dt = \left[\frac{g_{2}(t) - g_{1}(t)}{2}\right]_{1}^{2}$

$$= \frac{1}{2} \left[t \sin(\ln(t)) - t \cos(\ln(t))\right]_{1}^{2} = \frac{1}{2} \left(2\sin(\ln(2)) - 2\cos(\ln(2)) - \sin(\ln(1)) + \cos(\ln(1))\right)$$
(attention aux signes dans ce genre de calcul...)

$$= \frac{1}{2} \left(2\sin(\ln(2)) - 2\cos(\ln(2)) - \sin(0) + \cos(0) \right) = \sin(\ln(2)) - \cos(\ln(2)) + \frac{1}{2}$$
Donc
$$\int_{1}^{2} \sin(\ln(t)) dt = \sin(\ln(2)) - \cos(\ln(2)) + \frac{1}{2}$$

Donc
$$\int_{1}^{2} \sin(\ln(t)) dt = \sin(\ln(2)) - \cos(\ln(2)) + \frac{1}{2}$$

4)a) Quant t varie entre 1 et 2, entre quoi et quoi ln(t) varie-t-il?

La fonction ln est strictement croissante sur]0; $+\infty[$ (donc a fortiori sur [1; 2])

Donc: $\forall t \in [1; 2], \ln(1) \le \ln(t) \le \ln(2)$ Donc: $\forall t \in [1; 2], 0 \le \ln(t) \le \ln(2)$

Nous savons que les fonctions sinus et cosinus sont toutes les deux positives sur $[0; \frac{\pi}{2}]$. Et si t avait la bonne idée d'être dans cet intervalle? Comparons ln(2) et $\frac{\pi}{2}$ pour en avoir le cœur net.

$$\ln(2) < \frac{\pi}{2}$$
 (soit à la calculatrice, soit en constatant, par croissance de ln, $\ln(2) < \ln(e) = 1 < \frac{\pi}{2}$)

Donc:
$$\forall t \in [1; 2], 0 \le \ln(t) \le \frac{\pi}{2}$$
. Autrement dit, $\ln(t) \in [0; \frac{\pi}{2}]$

Or:
$$\forall x \in [0; \frac{\pi}{2}], \sin(x) \ge 0 \text{ et } \cos(x) \ge 0$$

Donc: $\forall t \in [1; 2], \cos(\ln(t)) \ge 0 \text{ et } \sin(\ln(t)) \ge 0$

Donc:
$$\forall t \in [1; 2], \cos(\ln(t)) \ge 0 \text{ et } \sin(\ln(t)) \ge 0$$

4)b) Interprétation graphique dans un exercice sur des intégrales. C'est téléphoné, non?

D'après 4)a), les fonctions $t \to \cos(\ln(t))$ et $t \to \sin(\ln(t))$ sont positives sur [1; 2]. Leurs intégrales entre -1 et 1 correspondent donc aux aires respectives délimitées par :

- leurs courbes respectives
- la droite des abscisses
- les droites d'équations x = 1 et x = 2

On n'aurait pas pu conclure ainsi si les fonctions n'étaient pas positives. Si elles étaient négatives, les intégrales correspondraient à l'opposé des aires. Si elles changeaient de signe, ce serait plus compliqué à décrire (certaines aires comptées positivement, d'autres comptées négativement).