Lemme de Schur

Ayoub Hajlaoui

Le loup lui dit « si ce n'est toi, c'est donc ton frère » Ce qui se dit aussi : « c'est toi ou c'est ton frère »

Énoncé : (temps conseillé : 40 min)

Soient E et F deux \mathbb{R} -espaces vectoriels de dimensions finies. On note $\mathcal{L}(E,F)$ l'ensemble des applications linéaires de E dans F et $\mathcal{L}(E)$ l'ensemble des endomorphismes de E. On note Id_E l'application identité sur E.

On rappelle que, pour $u \in \mathcal{L}(E)$, un sous-espace vectoriel A de E est dit stable par u si $u(A) \subset A$ (autrement dit, si, pour tout $x \in A, u(x) \in A$).

On dit qu'une partie U de $\mathcal{L}(E)$ est irréductible lorsque les seuls sous-espaces vectoriels de E stables par tous les éléments u de U sont E lui-même et $\{0_E\}$.

- 1) Soit U une partie irréductible de $\mathcal{L}(E)$. Soit $f \in \mathcal{L}(E,F)$ vérifiant : $\forall u \in U, \exists v \in \mathcal{L}(F)$, $f \circ u = v \circ f$. Montrer que f est nulle ou injective.
- 2) Soit V une partie irréductible de $\mathcal{L}(F)$. Soit $f \in \mathcal{L}(E,F)$ vérifiant : $\forall v \in V, \exists u \in \mathcal{L}(E), \ f \circ u = v \circ f$. Montrer que f est nulle ou surjective.
- 3) Soit U une partie irréductible de $\mathcal{L}(E)$ et soit f un endomorphisme non nul de E commutant avec tous les éléments de U. Montrer que f est un automorphisme de E.
- 4) Soit U une partie irréductible de $\mathcal{L}(E)$ et soit f un endomorphisme de E commutant avec tous les éléments de U. On suppose que f admet une valeur propre réelle λ . Montrer que $f = \lambda \operatorname{Id}_E$ On pourra s'intéresser à l'endomorphisme $f \lambda \operatorname{Id}_E$

Correction:

1) N'oublions pas que montrer « A ou B » revient à montrer : « si non A, alors B », ou encore « $(non\ A) \Rightarrow B$ ». Lire les deux vers médiocres (d'habitude, je fais mieux!) en prélude. Supposons que f est non nulle, et montrons qu'elle est injective.

On aurait aussi pu la supposer non injective, et montrer qu'elle est nulle, mais « non injective » me semble moins simple à exploiter dans le contexte.

Pour montrer que l'application linéaire f est injective, montrons que $Kerf = \{0_E\}$. Ça semble en effet la caractérisation d'injectivité la plus pertinente à utiliser vu la définition de partie irréductible donnée par l'énoncé

Mais... Attendez voir. U étant irréductible, les seuls sous-espaces vectoriels de E stables par tous les éléments u de U sont E lui-même et $\{0_E\}$. Peut-être s'agit-il tout simplement de montrer que Kerf est stable par tous les éléments u de U.. Ce qui donnerait Kerf = E ou Kerf = $\{0_E\}$. Ce qui correspond (respectivement) à « f nulle » ou « f injective ». Exactement ce qu'on veut! Mais alors dans ce cas, pas la peine de reformuler « A ou B » en « si non A, alors B » comme nous voulions le faire! (Et comme on le fait souvent). Montrons donc, de manière directe, que « A ou B » est vrai. Et laissons le loup, l'agneau et son frère imaginaire à leur fable...

Ker f est un sous-espace vectoriel de E. Par hypothèse, pour tout $u \in U$, il existe $v \in \mathcal{L}(F)$ tel que $f \circ u = v \circ f$

Il s'ensuit alors, pour tout $x \in \text{Ker} f : f(u(x)) = v(f(x)) = v(0_F)$ (car $x \in \text{Ker} f$). Et v est un endomorphisme de F. On a donc montré : $\forall u \in U$, $\forall x \in \text{Ker} f$, $f(u(x)) = 0_F$.

Autrement dit, on a montré : $\forall u \in U, \ \forall x \in \text{Ker} f, \ u(x) \in \text{Ker} f$.

 $\operatorname{Ker} f$ est donc un sous-espace vectoriel de E stable par tous les éléments de U.

Or, U est irréductible. Les seuls sous-espaces vectoriels de E stables par tous les éléments de U sont donc E lui-même et $\{0_E\}$.

On en déduit : $\operatorname{Ker} f = E$ (auquel cas f est nulle) ou $\operatorname{Ker} f = \{0_E\}$ (auquel cas f est injective).

En conclusion, si $f \in \mathcal{L}(E, F)$ vérifie : « $\forall u \in U, \exists v \in \mathcal{L}(F), f \circ u = v \circ f$ », alors f est nulle ou injective.

2) Si on a eu l'idée pour la 1), la démonstration est assez similaire...

Im f est un sous-espace vectoriel de F. Par hypothèse, pour tout $v \in V$, il existe $u \in \mathcal{L}(E)$ tel que $f \circ u = v \circ f$

Soit $y \in \text{Im} f$. Il existe $x \in E$ tel que y = f(x).

Appliquer la relation $f \circ u = v \circ f$ à x ou à y? Telle est la question. On n'a pas vraiment le choix, en fait. $u \in \mathcal{L}(E)$ et $f \in \mathcal{L}(E)$. On ne peut donc pas appliquer cette relation à y (élément de F).

f(u(x)) = v(f(x)) = v(y). Autrement dit, $v(y) = f(u(x)) \in \text{Im } f$.

On a montré : $\forall v \in U, \ \forall x \in \text{Im} f, \ v(x) \in \text{Im} f$

 $\operatorname{Im} f$ est donc un sous-espace vectoriel de F stable par tous les éléments de V.

Or, V est une irréductible (mais cette fois-ci de F, non de E). Les seuls sous-espaces vectoriels de F stables par tous les éléments de V sont donc F lui-même et $\{0_F\}$.

On en déduit : $\text{Im} f = \{0_F\}$ (auquel cas f est nulle) ou Im f = F (auquel cas f est surjective).

En conclusion, si $f \in \mathcal{L}(E, F)$ vérifie : « $\forall v \in V, \exists u \in \mathcal{L}(E), f \circ u = v \circ f$ », alors f est nulle ou surjective.

3) Ce genre de question où l'on peut retomber sur nos pattes même si on a eu du mal avec les précédentes...

Dans les questions 2 et 3, f était un élément de $\mathcal{L}(E, F)$. Dans cette question, f est un élément de $\mathcal{L}(E) = \mathcal{L}(E, E)$...

f est un endomorphisme non nul de E vérifiant : $\forall u \in U, \ f \circ u = u \circ f$.

Donc $f \in \mathcal{L}(E, E)$ et vérifie (en prenant par exemple v = u): $\forall u \in U, \exists v \in \mathcal{L}(E), f \circ u = v \circ f$ D'après 1) (appliquée dans le cas particulier où F = E), f est nul ou surjectif. f n'étant pas nul par hypothèse, on en déduit que f est injectif.

D'autre part, $f \in \mathcal{L}(E, E)$ et vérifie (en prenant par ex. u = v): $\forall v \in U$, $\exists u \in \mathcal{L}(E)$, $f \circ u = v \circ f$ D'après 2) (appliquée dans le cas particulier où F = E), f est nul ou surjectif. f n'étant pas nul par hypothèse, on en déduit que f est surjectif.

f est donc un endomorphisme bijectif de E. Autrement dit, f est un automorphisme de E.

4) Pour tout $u \in U$, $f \circ u = u \circ f$. Mais alors : $(f - \lambda \mathrm{Id}_E) \circ u = f \circ u - \lambda u = u \circ f - \lambda u = u \circ (f - \lambda \mathrm{Id}_E)$.

Donc $f - \lambda \operatorname{Id}_E$ commute avec tout élément de U.

En vertu de 3), si $f - \lambda \operatorname{Id}_E$ est non nul, c'est un automorphisme de E. Mais c'est impossible! En effet, λ étant valeur propre de f, $f - \lambda \operatorname{Id}_E$ n'est pas injectif (et donc pas bijectif, et donc pas un automorphisme).

On en déduit que $f - \lambda \mathrm{Id}_E$ est l'endomorphisme nul. En conclusion : $f = \lambda \mathrm{Id}_E$