Critère de comparaison hors programme mais facile à retrouver

Ayoub Hajlaoui

Montrons ce résultat mais ce sans contester qu'il est bien hors programme en BCPST.

Énoncé: (temps conseillé : 15 min)

Soient (u_n) et (v_n) deux suites réelles que $\sum_{n>0} v_n$ converge et telles que : $\forall n \in \mathbb{N}, v_n > 0$.

On suppose de plus : $u_n = o(v_n)$. Montrer la convergence de $\sum_{n > 0} u_n$

Correction:

Nous savons :
$$u_n = o(v_n)$$
 et $\forall n \in \mathbb{N}, v_n > 0$. Donc : $\lim_{n \to +\infty} \frac{u_n}{v_n}$

Comment me ramener aux outils de comparaison de séries du programme? Puis-je me ramener à une histoire d'équivalent? Je ne vois pas trop. À une comparaison \leq au moins à partir d'un certain rang? Peut-être que si, en me rappelant ce que veut dire explicitement cette limite nulle...

Autrement dit : $\forall \ \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \geq N, \ \left| \frac{u_n}{v_n} \right| \leq \varepsilon. \ \text{La dernière inégalité revient à : } |u_n| \leq \varepsilon v_n \dots$

L'assertion précédente étant valable pour tout ε strictement positif, elle est en particulier valable pour $\varepsilon = 1$. Nous savons donc qu'il existe un entier naturel N tel que : $\forall n \geq N, \left| \frac{u_n}{v} \right| \leq 1$

Cela revient à dire : $\forall n \geq N, \ |u_n| \leq v_n \text{ (puisque } v_n > 0)$

Or, la série $\sum_{n \ge 0} v_n$ converge. Donc, par comparaison de séries à termes positifs, $\sum_{n \ge 0} |u_n|$ converge aussi.

Ce n'est pas tout à fait la série qui nous intéressait, mais tout va bien. La convergence absolue implique la convergence...

Nous avons en fait établi la convergence absolue de $\sum_{n>0} u_n$, et donc la convergence de $\sum_{n>0} u_n$

Cet exercice est aussi corrigé en vidéo ici sur ma chaîne youtube.