Nature de la série des $\frac{\ln(n)}{n}$

Ayoub Hajlaoui

Une série dont la nature peut se deviner sans rature.

Énoncé: (temps conseillé : 5 min)

Déterminer la nature de la série $\sum_{n=1}^{\infty} \frac{\ln n}{n}$

Correction:

Nous savons que la série $\sum_{n>1} \frac{1}{n}$ diverge. Comment nous ramener, éventuellement, à une comparaison avec cette série, en utilisant les outils de comparaison du programme?

Intuitivement, en $+\infty$, $\frac{\ln n}{n}$ devient beaucoup plus grand que $\frac{1}{n}$. En oui attention, la question n'est pas la comparaison de $\ln n$ à n. D'accord, $\ln n$ se fait écraser par n en $+\infty$, mais ce n'est pas le sujet.

 $\frac{\ln n}{n}$, c'est $\frac{1}{n}$ que l'on a multiplié par ce $\ln n$ qui tend lentement mais sûrement vers $+\infty$... Inutile, toutefois, d'attendre aussi longtemps. Nous sommes pressés.

Par croissance de la fonction $\ln \operatorname{sur} \mathbb{R}_+^*$, nous savons : $\forall n \geq 3$, $\ln n \geq \ln 3 \geq \ln e = 1$

Donc: $\forall n \geq 3, \frac{\ln n}{n} \geq \frac{1}{n}$ On a juste divisé l'inégalité par n, strictement positif.

Le fait que cette inégalité ne soit valable qu'à partir du rang 3 ne me dérange absolument pas pour la comparaison qui va suivre.

Or, la série $\sum_{n\geq 1} \frac{1}{n}$ diverge. Donc, par comparaison de séries à termes positifs, $\sum_{n\geq 1} \frac{\ln n}{n}$ diverge aussi.

Cet exercice est aussi corrigé en vidéo ici sur ma chaîne youtube.